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Following Occam’s principle, a proposed reaction mechanism should not contain assumptions about the
existence of reactive intermediates and reaction paths that are unnecessary for a full description and
interpretation of the available facts. A mechanism refers, in this paper, to a proposed reaction scheme or
network that represents the reactions supposed to be going on in a complex reaction system with observable
species as well as unobservable reactive intermediates. The scope is limited here to (pseudo) first-order reactions
and the steady-state approximation is invoked in order to relate unknown mechanistic rate constants to
experimentally determined ones, and, when available, theoretically calculated quantities. When the resulting,
nonlinear system of equations admits a unique solution within a physically reasonable domain, it is concluded
that the reaction mechanism fulfills Occam’s principle. Otherwise, there are many or no solutions. No subjective
or qualitative arguments enter the procedure and the outcome is not negotiable.

Introduction

Mechanisms that are proposed for complex reactions may
imply unobservable intermediates and unwarranted steps. The
present effort is designed to formulate a procedure to distinguish
between alternative proposed reaction mechanisms by means
of an objective criterion depending on Occam’s razor. There
follows a short review of the kinetic equations for (pseudo) first-
order reactions in the next section, a matrix partitioning pro-
cedure and a steady-state approximation are the subjects for
the third part, and the fourth is devoted to the discussion of
possible solutions. Application to a base-catalyzed 1,3-proton-
transfer reaction is then offered and Occam’s principle serves,
in the sixth section, to differentiate between the suggested
options. Concluding remarks on the feasibility of a mathematical
resolution of conflicts among suggested reaction mechanisms
are submitted. The aim of our present study is restricted to
general (pseudo) first-order systems because they allow a general
and straightforward mathematical strategy with non-negotiable
results.

General (Pseudo) First-Order Kinetics1

ConsideringN reacting species of a system, one represents
its state by a vectoru(t) composed ofN elementsuµ(t) giving
concentrations at timet. When first-order kinetics applies to
all individual reactions in the system, the matrix eq 1 represents
the rate equations whereK is the rate constant matrix. Off-
diagonal elements ofK are the separate rate constants, whereas
the diagonal ones are the negatives of the sums of the other
elements in the same column. The rate constant matrixK is
therefore a matrix representation of the reaction scheme, and it
constitutes the final results obtained from kinetic experiments,
because the ultimate goal of kinetic experiments on the system
is to determine all the separate rate constants. This can be

achieved as follows if all concentrations are determined as
functions of time with sufficient accuracy.

Initial values of the concentrations att ) 0 are propagated by
means of the evolution operator according to the formal
expression

A more explicit expression is given by the spectral form

where the eigenvaluesλν of the matrixK appear. It follows
that the matrix C ) {Cµν} is formed by the right-hand
eigenvectors of the matrixK

From experimental observations of theN concentrations as
functions of time and using suitable numerical procedures, it is
possible to determine the parameters in eq 3 and therefore the
matricesC andΛ. There will exist an inverse matrixC-1 unless
there are degeneracies among the eigenvalues. Thus, one obtains
the individual rate constants from

Partitioning and the Steady-State Approximation

There are reasons to assume the presence of unobservable
reactive intermediates in addition to the observable species in
many cases. Such a reaction system is represented by a
mechanistic reaction scheme. The reactive intermediates occur
with low concentrations that do not affect the mass balance
within experimental error. Thus, their concentrations cannot be
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d
dt

u(t) ) Ku (t) (1)

u(t) ) eK tu(0) (2)

uµ(t) ) ∑νCµν exp(λνt) (3)

KC ) CΛ; Λ ) diag{λ1, λ2, ... ,λN-1, 0} (4)

K ) CΛC-1 (5)
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determined and therefore, the full rate constant matrix evades
recovery in the way described in the previous section. To
proceed, we have to restrict the kinetic analysis to the observable
species by elimination of the reactive intermediates from the
rate equations. This is conveniently done by means of the steady-
state approximation as applied to a partitioned form2 6 of the
basic eq 1. The vectoru is composed of then observable
concentrations in the vectorua andm unobservable concentra-
tions for the reactive intermediates in the vectorub, whereas
the mechanistic rate constant matrix partitions into four blocks,
eq 6. It follows that eq 6 is equivalent to eqs 7 and 8.

The intermediates have low concentrations and their rate of
change is set to zero in the steady-state approximation

Using the steady state approximation 9, contraction of eqs 7
and 8 leads to the forms

Because the concentrations in the vectorua(t) can be observed
experimentally, they are the components of the so-called
phenomenological reaction scheme in contrast to the mechanistic
reaction scheme, which contains the observable species as well
as the unobservable reactive intermediates. The rate equations
for phenomenological schemes in general are therefore written
as

Both Kphen andK ss aren × n matrices, so comparison of eqs
11 and 12 with eq 13 shows how the mechanistic and
phenomenological rate constants are connected, thus

Were all elements in the (n + m) × (n + m) mechanistic rate
constant matrix, eq 6, known, an easy calculation would yield
the phenomenological rate constants from eqs 12 and 14. In
practice, however, we are faced with the reverse problem. The
phenomenological rate constants, i.e., the elements of then ×
n matrix Kphen, are determined experimentally as described
above, cf. eq 5, and we want to extract information about the
rate constants in the mechanistic reaction scheme. The matrix
blocks Kaa and Kba contain the rate constants for the slower
reactions from the observable species, whereasKab andKbb are
built from the more rapid rates of the non-observable ones. Thus,

the matrixQ, eq 12, expresses ratios between the rate constants
for these faster reactions rather than their absolute values. This
is a consequence of the steady-state approximation.

Unique Solution of a System of Nonlinear Equations as
Criterion of Occam’s Principle

Let po be the number of independent nonzero elements in
KphenandK ss. Thus,po is the number of phenomenological rate
constants. The numerical values of these rate constants are
obtained from experiments as explained above. According to
eqs 6 and 12, the nonzero elements inK ss will be functions of
theq independent mechanistic rate constants and rate constant
ratios,x ) {x1 x2 ‚‚‚ xq}, in Kaa, Kba, andQ. Thus, eq 14
represents a system ofpo nonlinear equations withq unknowns,
expressed more explicitly by the form 15 below. The ultimate
goal of a mechanistic study is to determine the unknown
mechanistic parametersx.

If the phenomenological rate constants represented byKphen

are the only facts available for the reaction system studied, there
is obviously no imperative necessity to propose the existence
of reactive intermediates. It is also well-known that an arbitrary
number of hypothetical mechanisms consistent withKphen can
be found, if there are no restrictions on the number of
mechanistic parameters inx. Such proposed mechanisms
therefore contain unnecessary assumptions and remain specula-
tive. Thus, mechanistic information can be achieved only if
additional facts providing auxiliary equations can be found. An
example is kinetic studies, under unchanged conditions, of a
system in which some of the original reaction steps are
decoupled from the others as exemplified by the mechanistic
reaction Schemes 3 and 4. In analogy with the above treatment,
this gives the equation system 16 whereK ′phenhasp′ indepen-

d
dt(ua(t)

ub(t) ) ) (Kaa Kab

Kba Kbb
)(ua(t)

ub(t) ) (6)

d
dt

ua(t) ) Kaaua(t) + Kabub(t) (7)

d
dt

ub(t) ) Kbaua(t) + Kbbub(t) (8)

d
dt

ub(t) ) 0 (9)

ub(t) ) -Kbb
-1Kbaua(t) (10)

d
dt

ua(t) ) K ssua(t) (11)

K ss) Kaa- QKba; Q ) KabKbb
-1 (12)

d
dt

ua(t) ) Kphenua(t) (13)

Kphen) K ss (14)

SCHEME 1: Phenomenological Reaction Scheme and
Rate Constants for the “Degenerate” 1,3-Proton-Transfer
Reaction in 1,3-Dimethylindene Competing with
Irreversible H/D-Exchangea

a A1 is 1-(2H3)methyl-3-methylindene and A2 is 1-methyl-3-
(2H3)methylindene. Corresponding species in which the mobile proton
has been replaced by a deuteron are denoted A3 and A4. Thus, A3 is
1-(2H3)methyl-3-methyl(1-2H)indene and A4 is 1-methyl-3-(2H3)methyl(1-
2H)indene.

SCHEME 2: Phenomenological Reaction Scheme and
Rate Constant for a “Degenerate” 1,3-Proton-Transfer
Reaction with No Competing H/D-Exchangea

a A1 is 1-(2H3)methyl-3-methylindene and A2 is 1-methyl-3-
(2H3)methylindene.
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dent nonzero elements. Thus, eqs 15 and 16 represent together
a system with (po+ p′) equations.

It may also be possible to extend the number of facts beyond
what can be obtained by kinetics. In the examples given below,
we use a theoretically calculated equilibrium isotope effect,
which can be expressed as a function of (some of) the variables
x ) {x1 x2 ‚‚‚ xq}. This gives an additional equation
symbolically written as eq 17 to include the general case with
p′′ > 1 auxiliary quantities collected in the vectorΓ. Altogether,
the forms 15, 16, and 17 now represent a system withp ) (po+
p′ + p′′) nonlinear equations andq unknowns.

An equation system of this kind can have many solutions,
one unique one, or none. Iterative numerical procedures are
required in the search for solutions.3 A situation with no solution
implies that the proposed mechanistic model cannot account
for the facts available. A mechanism that results in many
solutions is unsatisfactory because it gives no unambiguous
results concerning the mechanistic rate constants and rate
constant ratios. (This ambiguity can be expected whenp < q,
i.e., when the number of unknowns is greater than the number
of equations.) Thus, the only acceptable outcome is a unique
solution within a physically reasonable domain.

We conclude that a proposed mechanistic scheme complies
with Occam’s principle vis-a`-vis a set of given facts if there is
a unique solution to the corresponding system of nonlinear
equations. The mechanistic model is confronted only with
available facts and no subjective or qualitative arguments enter

the procedure. Figure 1 offers a general strategy to test a reaction
mechanistic model with respect to unnecessary assumptions,
given a number of phenomenological and (if necessary)
theoretically calculated quantities. The steady-state contraction
of the mechanistic rate constant matrix according to eq 12 is
included as an option to a computer program for the numerical
solution of systems of nonlinear equations. The output depends
therefore only on the input and no subjective arguments enter
the procedure. The statement that a mechanistic model complies
with Occam’s principle does not, of course, mean that it is the
“true” mechanism. Eventually, additional facts may become
available necessitating analysis of a new system of nonlinear
eqs 15-17.

Phenomenology

The use of the present method to find a reaction mechanistic
model in agreement with Occam’s principle and to determine
the mechanistic rate constants and rate constant rations will now
be exemplified by a reaction system where an amine-catalyzed
“degenerate” 1,3-proton transfer in the indene system competes
with H/D-exchange.4 Additional kinetic information was ob-
tained by a study of the 1,3-proton transfer without competing
H/D-exchange. The phenomenological reaction schemes and rate
constants are given symbolically in Scheme 1 and Scheme 2
and the phenomenological rate constant matrices in eqs 18 and
19, respectively.

One of the CH3- groups in 1,3-dimethylindene had been
replaced by a CD3- group that made it possible to distinguish
by NMR technique4 the four dimethylindene species A1-A4.
The 1,3-transfer reactions were catalyzed by an aliphatic amine.
The irreversible H/D-exchange (Scheme 1) was effected by

SCHEME 3: Mechanistic Reaction Scheme and Rate
Constants When H/D-Exchange Competes with Proton
Transfera

a Proposed reactive ion-pair intermediates to which the steady-state
approximation is applied are denoted B1,... B6.

SCHEME 4: Mechanistic Reaction Scheme and Rate
Constants for the Reaction without H/D-Exchangea

a Proposed reactive ion-pair intermediates to which the steady-state
approximation is applied are denoted B1 and B2.

K ss(x) - Kphen) 0; x ) {x1, x2, ... ,xq} (15)

K ′ss(x') - K ′phen) 0; x′ ∈ x (16)

Γ(x′′) - Γtheor) 0; x′′ ∈ x (17)

Figure 1. General strategy for testing a reaction mechanistic model
with respect to Occam’s principle.

Kphen)

[ - (kH + kC + kE) kH 0 0

kH - (kH + kC + kE) 0 0

kE kC - kD kD

kC kE kD -kD ] (18)

K ′phen) [ -kno
H kno

H

kno
H -kno

H ] (19)
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using a large excess of deuterated catalyzing amine. The
reactions were studied using two different amine catalysts called
Catalyst I and Catalyst II. These can be imagined as secondary
and primary amines, respectively. The expected small secondary
isotope effects due to the methyl group labeling are neglected.
Because of the lack of sufficient experimental data,4 the analysis
that follows is based on realistically simulated experiments, here
presented graphically in Figure 2 where the time evolution of
the concentrations of all the observable species, A1, A2, and
A1, A2, A3, A4, respectively, are given. Treatment of the
“experimental” data by standard numerical methods results in
the matricesC and Λ, cf. eqs 3 and 4 and Appendix A.
Numerical values for the phenomenological rate constant
matrices were then calculated using eq 5, with the results given
in Appendix A.

Mechanistic Models for Proton Transfer and H/
D-Exchange

The base-catalyzed 1,3-proton-transfer reaction in the indene
system has been supposed to proceed via two ion-pair inter-
mediates4 according to the mechanistic reaction Scheme 3. Of
special importance was the determination of the ratio between
collapse and interconversion of the indenyl-ammonium ion pair,
i.e.,kcollapse

H /kinter. Furthermore, knowledge about the competing
pathways for H/D-exchange as represented in the mechanistic
reaction Scheme 3 was essential. Finally, knowledge of the
primary isotope effect for proton abstraction from the hydro-
carbon to form the ion-pair, i.e.,kH/kD, is of vital importance
for understanding of the mechanistic details. Here we will show
that complete mechanistic information in the Occam sense can
be found for the “degenerate” rearrangement of 1,3-dimethyl-
indene using the strategy described in the present report.
Previously,4 it was possible to draw only qualitative and

incomplete conclusions from the experimental results. The
species B represent hydrogen-bonded ion pairs between the
dimethylindenyl anion and a substituted ammonium ion. B1 and
B2 are H-bonded and B3-B6 are D-bonded. The mechanistic
rate constantskH andkD characterize the slow reactions involving
H- and D-abstraction respectively, from carbon to nitrogen.
In addition, we have five rate constants representing the rapid
reactions (kcollapse

H kcollapse
D krot kcross kinter). Secondary iso-

tope effects are neglected.
As explained above, steady-state contraction of mechanistic

rate constant matrices results in rate constant ratios for the rapid
reactions. These ratios appear in the matrixQ, eq 12. Thus,
there are altogether six mechanistic parameters involved after
steady-state contraction of our reaction schemes. We choose
kinter as denominator in the ratios. Furthermore, and for con-
venience, we make use of the primary kinetic isotope effectsz
and â instead of kH and kcollapse

H . The “complete” set of
mechanistic parametersx is therefore defined by eq 20.

The explicit matrix representations, in partitioned form according
to eq 6, of the mechanistic schemes are given in Appendix B.
The steady-state contracted rate constant matrices, obtained
using the general procedure shown by eq 12, are given for the
mechanistic reaction Scheme 3 by eq 21

where

and by eq 23 for Scheme 4

with

A complicated case as eq 21 presents a formidable- and
unnecessary- task to try to evaluate the individual elements
of the matrixKssexplicitly. Equation 23 can be readily evaluated
explicitly but this is not required for the numerical applications
to follow.

Facts versus Models Exposed to Occam’s Razor

We will now match the experimental facts with the mecha-
nistic models following the general strategy outlined in Figure
1. Demonstrating the basic idea, we first consider the simple
case when a reaction with no exchange is the only one providing
facts about proton transfer (Schemes 2 and 4). We have then a
numerical value{eq (A4) or (A8)} for the phenomenological
rate constant and there is only one equation,kno

H ) kH/(2 + æ),
involving the two unknown mechanistic parameterskH ) zkD

and æ ) âê ) kcollapse
H /kinter. There are thus infinitely many

Figure 2. Graphical representations of the concentrations of the
observable species A1 and A2 (upper panels) and A1, A2, A3, and A4

(lower panels) in Catalyst I (left panels) and Catalyst II (right panels).
Numerical values are given in Appendix A.

x ) [kD

z
â
ê
η
θ

] ) [kD

kH/kD

kcollapse
H /kcollapse

D

kcollapse
D /kinter

krot/kinter

kcross/kinter

] (20)

K ss(kD, z, â, ê, η, θ) )
Kaa(kD, z) - Q(â, ê, η, θ)Kba(kD, z) (21)

Q(â, ê, η, θ) ) Kab(kinter,â,ê)Kbb
-1(kinter, â, ê, η, θ) (22)

K ′ss(kD, z, â, ê) ) K ′aa(kD, z) - Q′(â, ê)K ′ba(kD, z) (23)

Q′(â, ê) ) K ′ab(kinter, â, ê)K ′bb
-1(kinter,â,ê) (24)
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solutions to the equation in the two unknown mechanistic
quantitieskH and æ. The conclusion is that the mechanistic
model (Scheme 4) can account for the experimental data but
does contain unnecessary assumptions because it gives ambigu-
ous results that cannot be distinguished on the basis of here
available facts. Put in a different way: A single phenomenologi-
cal rate constant gives no mechanistic information.

Considering the proposed general mechanistic model where
irreversible H/D-exchange competes with 1,3-transfer reactions
(Scheme 3), three different cases can be imagined concerning
how the H/D-exchange between the ion pairs occurs. They are
denoted mechanism a, b, and c and defined in Table 1 with the
notations given in Scheme 3 and eq 20. As explained above,
KphenandK ′phen represent the phenomenological rate constants
obtained from experiments with and without exchange respec-
tively (cf. Appendix A). It is admissible to assume that the
equilibrium isotope effect for ion pair formation can be
calculated with sufficient accuracy to provide an additional
condition (cf. eq 17). This equilibrium isotope effect,Γ, is
related to the mechanistic rate constants in Scheme 3 as

The possible outcomes, i.e., no solution, a unique solution and
many solutions (Figure 1), which are obtained from the nonlinear
system of eqs 15-17 with four, five, or six equations, are
presented in Table 1.

Only a few comments on Table 1 seem necessary:
• The mechanistic model a withkrot ≡ 0 cannot account for

the facts neither for Catalyst I nor for Catalyst II because no
solution is obtained. This is expected already from qualitative
inspection of the lower panels of Figure 2, which shows that
A3 is formed faster than A4. (This fact also excludes, for
symmetry reasons, a simpler mechanistic model with a single
intermediate between the isomeric indenes.)

• No reaction mechanism in the Occam sense can be found
from the results of an exchange experiment alone (Kphen), for
neither Catalyst I nor Catalyst II.

• A unique solution (xbI) was found for mechanism b using
the combined results of experiments with and without exchange
(Kphen + K ′phen) for Catalyst I (but not Catalyst II).

• A unique solution (xcII) for Catalyst II required the use of
six equations and mechanism c.

• This essential difference between the two Catalysts can
hardly be detected by qualitative inspection of the primary
experimental results presented in Figure 2, and it is therefore a
striking example of the usefulness of our mathematical approach.

• It is also consistent that in the unique solutionxcI for Catalyst
I, θ “automatically” becomes zero and that the calculated values
of the other parameters are the same as inxbI.

Numerically resolved mechanistic rate constants and ratios
are listed in Table 2 for the two examples considered. Table 3
gives the phenomenological kinetic isotope effects as obtained
directly from the phenomenological rate constants. These
depend, as expected, on whether H/D-exchange is included or
not. As forseen, they differ considerably from the mechanistic
one, kH/kD ) z, for the proton abstraction step, which is
significant in structure-reactivity investigations.

Conclusions

Experimental and theoretical data, albeit simulated, have been
used here to demonstrate that qualitative as well as quantitative
results can be derived for a mechanistic model, such as offered
by Scheme 4, by our proposed mathematical-numerical ap-
proach. It provides stronger evidence for the proposed model
than qualitative arguments, and the presence of a unique solution
to the nonlinear equations implies that the mechanistic model
obeys Occam’s principle vis-a`-vis given facts.

The mechanistic model(s) and facts available from experi-
ments and (if necessary) theory are fused to form a system of
nonlinear equations. The kinetic equations for the model are
suitably partitioned in a matrix formulation and application of
the steady-state approximation provides, as eq 12, forms that
are added as an option to a computer program for the numerical
solution of systems of nonlinear equations. We used the solve
block routine in the Mathcad 8 Professional package. For a
standard PC, the cpu time is<2 s for problems of the present
size.
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TABLE 1: Number of Solutions to the Equation Systems
15-17 for Mechanisms a, b, and c

experimental
and

theoretical
facts from

no.p
of facts)
equations

mechanism a,
q ) 5

krot, ≡ 0 w
η ≡ 0

mechanism b,
q ) 5,

kcross≡ 0 w
θ ≡ 0

mechanism c,
q ) 6

no constraints

K phen 4 0 (0) >1 (>1) >1 (>1)
K phen+ K ′phen 5 0 (0) xbI (0) >1 (>1)
K phen+ K ′phen

+ Γtheor

6 0 (0) xbI (0) xcI(xcII)

a Number of mechanistic parameters) q. Results are for Catalyst I
with those for Catalyst II in parentheses. Unique solutions, i.e., those
representing Occam mechanisms, arexbI, xcI, andxcII (cf. eqs 20 and
26).

Γ(z,â) ) ( kH

kcollapse
H )(kcollapse

D

kD ) ) z/â (25)

xbI ) [1.25
5.82
4.21
0.45
1.90

], xcI ) [1.25
5.82
4.21
0.45
1.90
θ ) 0

], xcII ) [1.33
5.77
4.18
0.41
2.67
0.32

] (26)

TABLE 2: Mechanistic Rate Constants and Ratios as Used
in Schemes 3 and 4

rate constant (ratio) Catalyst I Catalyst II

kH(zkD) 7.28 7.67
kD 1.25 1.33
kcollapse

H /kinter(âê) 1.89 1.71
kcollapse

D /kinter(ê) 0.45 0.41
krot/kinter(η) 1.90 2.67
kcross/kinter(θ) 0 0.32
kH/kD(z) 5.82 5.77
kcollapse

H /kcollapse
D (â) 4.21 4.18

TABLE 3: Phenomenological Kinetic Isotope Effects from
Schemes 1and 2

KIE Catalyst I Catalyst II

no exchange:kno
H /kno

D 3.67 3.75
with exchange:kH/kD 3.26 3.65
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Appendix A

Time evolution of the observable species (cf. eq 3) and
numerical values for the corresponding rate constant matrices
(cf. eqs 18 and 19) obtained using eq 5. Subscripts I and II
refer to experiments using different catalysts. The time evolution
is represented graphically in Figure 2.

Appendix B
Rate constant matrices partitioned according to eq 6 for the

mechanistic reaction Schemes 3 (eqs B1-B4) and 4 (eqs B5-
B8).

The notations∆ ) 1 + âê + η + θ and∆' ) 1 + ê + η +
θ are used here.
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(A1(t)
A2(t)
A3(t)
A4(t)

)
I

)

(0.5 0.5 0 0
-0.5 0.5 0 0
-0.0414 -0.5 0.0414 0.5
0.0414 -0.5 -0.0414 0.5

)( exp(- 4.50t)
exp(-1.17t)
exp(-1.02t)
1

) (A1)

KphenI) ( -2.835 1.663 0 0
1.663 -2.835 0 0
0.730 0.442 -0.510 0.510
0.442 0.730 0.510 -0.510

) (A2)

(A1(t)
A2(t) )

I
) (0.5 0.5

- 0.5 0.5)( exp(-3.74t)
1 ) (A3)

K ′phenI) ( -1.868 1.868
1.868 -1.868) (A4)

(A1(t)
A2(t)
A3(t)
A4(t)

)
II

) (0.5 0.5 0 0
-0.5 0.5 0 0
-0.0282 -0.5 0.0282 0.5
0.0282 -0.5 -0.0282 0.5

)
( exp(-5.35t)

exp(-1.33t)
exp(-1.10t)
1

) (A5)

KphenII ) ( -3.341 2.011 0 0
2.011 -3.341 0 0
0.785 0.546 -0.551 0.551
0.546 0.785 0.551 -0.551

) (A6)

(A1(t)
A2(t) )

II
) (0.5 0.5

-0.5 0.5)( exp(-4.13t)
1 ) (A7)

K ′phenII ) ( -2.065 2.065
2.065 -2.065) (A8)

Kaa(kD, z) ) -kD(z 0 0 0
0 z 0 0
0 0 1 0
0 0 0 1

) (B1)

Kba(kD, z) ) kD(z 0 0 0
0 z 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

) (B2)

Kab(kinter, â, ê) ) kinterê(â 0 0 0 0 0
0 â 0 0 0 0
0 0 1 0 1 0
0 0 0 1 0 1

) (B3)

Kbb(kinter, â, ê, η, θ) ) kinter

( -∆ 1 η θ 0 0
1 -∆ θ η 0 0
η θ -∆' 1 0 0
θ η 1 -∆' 0 0
0 0 0 0 -1 - ê 1
0 0 0 0 1 -1 - ê

) (B4)

K ′aa(kD, z) ) -zkD(1 0
0 1) (B5)

K ′ba(kD, z) ) zkD(1 0
0 1) (B6)

K ′ab(kinter, â, ê) ) kinterâê(1 0
0 1) (B7)

K ′bb(kinter, â, ê) ) - kinter(1 + âê -1
-1 1 + âê ) (B8)
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